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Abstract 

Today’s high-energy particle physics experiments are heavily predicated on the 

ability to retrieve useful and interesting event data out of extremely large data 

sets. Discrimination between signal and background must be optimized in order 

to produce the best possible experimental results. The Toolkit for Multivariate 

Analysis (TMVA) within ROOT provides many different algorithms for the 

classification of signal and background events. We will analyze the Artificial 

Neural Network (ANN) methods within TMVA. More specifically, we will 

examine the implementation of multilayer perceptrons to classify Z→μμ decay 

data and Drell-Yan process data.
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Introduction 

 The Large Hadron Collider (LHC) is the world’s largest and most powerful particle 

collider. Deep beneath the Franco-Swiss border, the 27-kilometer ring accelerates two high-

energy particle beams to speeds nearing the speed of light. The two beams are then set to 

collide. With a design energy of 7 TeV per beam, the LHC would reach a center of mass 

collision energy of 14 TeV and a luminosity of 1034 cm-2 s-1. Recently, the LHC has been 

running with a center of mass energy of 13 TeV at the collision with the goal of steadily 

increasing the luminosity to 2*1034 [1]. These collisions are analyzed by four main detectors: 

ATLAS, CMS, ALICE, and LHCb. The Compact Muon Solenoid (CMS) detector is a 

general-purpose detector. With a layered, modular design built around a large solenoid 

magnet, the CMS detector is designed to detect a variety of particles and phenomena 

produced in the collisions. In the searching for rare particles, an extremely large number of 

collisions are required. Since the vast majority of these events do not produce interesting 

effects, it is essential to have an accurate and robust classification method for discriminating 

between signal and background events and objects. Algorithms based on machine learning 

have provided relatively accurate means of classification in high-energy physics experiments. 

Within ROOT, the Toolkit for Multivariate Analysis (TMVA) provides many different 

“supervised” classification algorithms. We used a toy data set and Monte Carlo simulated 

Z→μμ decay events to examine the how the architecture of a Multilayer Perceptron (MLP) 

affects data classification.  

 

Toolkit for Multivariate Analysis 

 The Toolkit for Multivariate Analysis (TMVA) is a high-energy physics (HEP) 

oriented toolkit that has been integrated into ROOT. It is used for the processing, evaluation, 

and application of multivariate classification. TMVA includes a variety of “supervised 

learning” classification and regression algorithms [2]. These algorithms use training events, 

in which the featured inputs and desired outputs are provided to determine a mathematical 

model that will then make predictions about the classification of future data. We are 

interested in the algorithms that will help discriminate our data into two categories: signal and 

background. 
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 Feed-forward neural networks (NNs), also known as multilayer perceptrons (MLPs), 

are popular in the classification of data. An MLP is a network of interconnected neurons 

arranged in layers. Each layer is linked by a set of weighted connections. These weights 

determine the relative importance of each neuron in the computation of the output value(s). 

Each neuron or node processes the information (values) it receives from multiple inputs using 

an activation function. Each neuron then provides a single output, and passes it to the next 

layer of neurons [3]. Figure 1 depicts a single neuron receiving weighted inputs, processing 

the values with the activation function, and the passing the output. 

 

 

 

 

 

 

 

 

 

 

Once the output is given, the network uses a cost function to quantify the discrepancy in the 

modelled output and the actual output. The network then uses back propagation of errors to 

determine how much to tweak each weight between neurons. The network continues to adjust 

the values of each weight until a cost function is minimized or the number of training cycles 

is reached. 

An MLP consists of three or more layers of neurons. The first layer is known as the 

input layer. It provides the feature variables of the data to the model. This is followed by one 

or more hidden layers. The final layer is called the output layer. This provides the response of 

the model. In this paper, the response is the classification of signal or background. A neural 

network can be viewed as mapping from a space of input variables onto a space of output 

variables [2]. Figure 2 provides an example of a multilayer perceptron. 

Figure 1: Picture of a single neuron 

receiving input values and producing 

an output 
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The TMVA includes three Artificial Neural Network (ANN) implementations: the 

Clermont-Ferrand neural network, the ROOT neural network, and the MLP neural network. 

The MLP neural network is recommended because it is the fastest and most flexible of the 

three implementations [2]. The configuration options for the MLPs give the user discretion 

over many of the MLP’s attributes including the number of hidden layers, number of nodes in 

each hidden layer, neuron activation function, and number of training cycles. This enables the 

user to tailor the MLP to their specific set of input variables. 

 

Academic Toy Data 

To test the architecture of different MLPs, we used two different sets of data. For the 

first set, we used an example data set of four linearly correlated Gaussian distributed “toy” 

input variables provided by TMVA. Each variable is classified into signal and background 

events.  Figure 3 depicts the distribution of each variable’s signal and background inputs.  

 

 

 

Figure 2: Details a multilayer 

perceptron with three input 

variables, two hidden layers, and one 

output variable 
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Through basic examination, it is easy to spot the slight separation between the signal and 

background events before applying the MLP algorithm to the inputs.  

 In order to visualize the effects of deeper MLP architectures, we decided to model 

eight different MLPs. We ran four of the MLPs with one hidden layer. One MLP was given 

four nodes, one was given nine, another was given fourteen, and the last was given nineteen 

nodes. The other four MLPs were given two hidden layers with the same amount of nodes as 

in hidden layer one. We allocated four, nine, fourteen, and nineteen nodes in each layer for 

the deeper networks. Since we modified the number of hidden layers and nodes within each 

layer, we were forced to keep the other MLP attributes constant. Every neuron used the 

sigmoid activation function (1), and we used 600 training cycles for each network. 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 
1

1+𝑒−𝑥 (1) 

 

Figure 3: The graphs of arbitrarily 

named toy input variables var 1, var 

2, var 3, and var 4. The blue 

gaussian histograms represent the 

signal events and the red gaussian 

histograms represent the 

background events for each variable 
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 With our MLP architectures set, we were then able to test these deeper neural 

networks. Figure 4a and 4b display the MLP outputs of each different type of network.  

 

 

 

Examining these outputs by eye can give us a relative feeling of the effectiveness for the 

discrimination of an MLP network, however, we would prefer not to rely on such a subjective 

approach to determine if a network is adequate. In order to quantify the performance of a 

network we made use of a Receiver Operating Characteristic (ROC) curve. A ROC curve is 

graphical representation of discrimination values, and is used to compare classification 

methods. It is created by plotting certain discrimination values on the y- and x-axis. We 

implemented a C++ script that plotted the number of background events above each cut along 

the x-axis divided by the total number of background events (background efficiency) versus 

the number of signal events above each cut along the x-axis divided by the total number of 

signal events (signal efficiency). A high-arching ROC curve with an Area Under the Curve 

(AUC) of 1 would represent a network with complete discrimination between signal and 

Figure 4a: Depicts the multilayer perceptrons 

for the four networks with a single hidden 

layer. The network architectures are shown as 

follows: 

Top left: four nodes, top right: nine nodes, 

bottom left: fourteen nodes, bottom right: 

nineteen nodes. 

Figure 4b: Depicts the multilayer perceptron 

outputs for the four networks with two hidden 

layers. Each network has the same number of 

nodes in hidden layer one and hidden layer 

two. The network architectures are shown as 

follows 

 Top left: four nodes in each hidden layer, top 

right: nine nodes, bottom left: fourteen nodes, 

bottom right: nineteen nodes. 
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background (no overlap). A low-arching ROC curve nearing a slope modeled by the equation 

y=x with an AUC of .5 would represent a network that would have completely no 

discrimination between signal and background (complete overlap). With this method, we 

could compare the effectiveness of all MLP outputs to each other. Figure 5a shows the ROC 

curves for all eight MLPs superimposed on one plot. Figure 5b is a table of AUC values for 

each of the individual networks. 

 

 

 

 

 

 

From the table above, it is evident that the deeper MLPs provide little to no statistical 

improvements in the performance of discriminating signal from background. For this 

example, we can assume that the MLPs are able to accurately classify the data with only one 

hidden layer. With other data samples, this may not be the case. 

 

Figure 5a: Graph of the ROC 

curves for all eight MLPs 

Total Hidden Layers: Nodes in Layer One: Nodes in Layer Two: Area Under the ROC Curve (AUC)

One Four N/A 0.9195

One Nine N/A 0.9193

One Fourteen N/A 0.919

One Nineteen N/A 0.9193

Two Four Four 0.9199

Two Nine Nine 0.9191

Two Fourteen Fourteen 0.9186

Two Nineteen Nineteen 0.9202

Toy Data: Area Under the Curve Table

Figure 5b: Table of AUC values for 

each of the eight neural networks 
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Dimuon Event Classification 

 Our second implementation of the MLP method utilized the invariant mass peak 

computed from simulated Z→μμ decay data to represent signal events and the side-bands 

surrounding the invariant mass peak computed from simulated Drell-Yan process with Z→μμ 

data as background events. In order to make sure we had the proper input variables for our 

MLPs, we received the final .root files after the desired variables and events had been 

selected using a Python script with a C++ analyzer. With a .root file consisting of the desired 

variables, we then computed the invariant mass of each event using the transverse momentum 

(pT) of each muon and the difference in the angles eta (∆η) and phi (∆φ) with the following 

derivation from the Energy-Momentum relation: 

𝑀𝜇𝜇 = √2𝑝𝑡1𝑝𝑡2 (cosh(∆𝜂) − cos(∆𝜑)) (2) 

We then determined our signal and background events for the training of our MLPs. To 

designate the events used for the signal, we used the invariant mass of the dimuons from the 

pure Z→μμ decay data. In order to isolate the events within the invariant mass peak, we used 

the entries within the range of 80 to 100 GeV. Figure 6a depicts the histogram of the pure 

Z→μμ invariant mass. 

 For background events, we decided to use three different cases to test the effectiveness of 

classifications with MLPs. The first case we used the band of events from 60 to 80 GeV for 

background. In the second case, we used the band of events from 100 to 120 GeV. For the 

third case, we used both bands, 60-80 GeV and 100-120 GeV. Using both bands for 

background would be the most realistic case for actual experimental classification. Figure 6b 

depicts the invariant mass of the Drell-Yan process with dimuon decay. 

  

 

 

Figure 6a: Histogram of the 

pure Z→μμ invariant mass. The 

blue band highlights the region 

of signal events we used to train 

the MLPs 

Figure 6b: Histogram of the invariant mass 

of the Drell-Yan process with a y-axis 

logarithmic scale. The red bands highlight 

the regions used for background events in 

the training of the MLPs. As it shows, Case 1 

uses the band of events with lower mass for 

background. Case 2 uses the band of events 

with a higher mass for background. Case 3 

uses both bands for background. 
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Figure 7a, 7b, and 7c depict the distribution of the input signal and background events for the 

three different cases. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7a: Histograms of the signal (blue) 

and background (red) inputs for Case 1. 

The variables are shown as follows: 

Top left: high transverse momentum, top 

right: low transverse momentum, bottom 

left: difference in eta, bottom right: 

difference in phi 

Figure 7b: Histograms of the signal (blue) 

and background (red) inputs for Case 2. 

The variables are shown as follows: 

Top left: high transverse momentum, top 

right: low transverse momentum, bottom 

left: difference in eta, bottom right: 

difference in phi 

Figure 7c: Histograms of the signal (blue) and background (red) inputs for Case 3. 

The variables are shown as follows: 

Top left: high transverse momentum, top right: low transverse momentum, bottom 

left: difference in eta, bottom right: difference in phi 
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For each case, we implemented two MLPs. The first network consisted of the input 

layer, one hidden layer with four nodes, and the output layer. The second network had two 

hidden layers with four nodes in each layer. We kept the number of training cycles constant 

at 5,000 cycles to give our networks more practice modelling the data sets. Each neuron was 

designated a sigmoid activation function. Figure 8a, 8b, and 8c depict the three MLP outputs 

after training each network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8a: The signal (blue) and 

background (red) histograms of the 

MLP output for Case 1 (60-80 GeV 

background).  

Top: One hidden layer with four 

nodes, bottom: two hidden layers with 

four nodes in each layer.  

Figure 8b: The signal (blue) and 

background (red) histograms of the 

MLP output for Case 2 (100-120 GeV 

background).  

Top: One hidden layer with four 

nodes, bottom: two hidden layers with 

four nodes in each layer.  

Figure 8c: The signal (blue) and background 

(red) histograms of the MLP output for Case 

3 (60-80 GeV and 100-120 GeV background).  

Top: One hidden layer with four nodes, 

bottom: two hidden layers with four nodes in 

each layer.  
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In order to more accurately determine the six networks’ ability to discriminate signal 

from background, we implemented our ROC curve, in which allows us to calculate the AUC 

for each. Figure 9a depicts the each ROC curve, and Figure 9b illustrates the AUC value for 

each MLP output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9a: ROC Curves for the six MLP outputs. 

Figure 9b: Tables of the AUC 

values for each network. 
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After examining the ROC curves and AUC tables, it is difficult to recognize the 

change in MLP outputs after adding an extra hidden layer. In Case 1, the AUC improves 

significantly, but in the other two cases, the AUC decreases slightly.  

 

Conclusion  

As experiments in particle physics continue to work to provide answers regarding our 

physical world, the equipment and analysis methods have to become more complex. These 

experiments depend on the ability to extract a tiny sample of events and objects from massive 

data sets. It is vital that the methods of discrimination provide accurate and well-defined 

results. In our use of the multilayer perceptron method with TMVA, it was evident that the 

deeper neural networks did not provide much, if any, improvement in discrimination between 

signal and background events. As the work and research behind machine learning improves, 

neural networks and other classification methods will improve. With this research, deeper 

MLPs with the ability to learn more complex data features will add to the tools available to 

scientists for event discrimination. 
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